Pensieri periodici
1:3= 0,3333333333333333333333333333333333... è un numero periodico, e wikipedia insegna che è "un numero in cui una parte della sua parte decimale si ripete indefinitamente. Ogni numero di questo tipo è razionale e può essere rappresentato mediante una frazione".
Oh, meno male, 1/3, risparmiati tempo e fatica!
Ma da dove vengono tutti quei tre dopo la virgola? Allora, cerco di capirci qualcosa: il primo tre dopo la virgola sono tre decimi, il secondo tre è tre centesimi, il terzo tre millesimi e così via.
Se ora moltiplico tutto per tre verrebbe così:
3x0,3= 0,9
3x0,03= 0,09
3x0,003= 0,009
e se continuo e li sommo tra loro viene fuori 0,999, ma potreri continuare a moltiplicare e poi a sommare... verrebbe fuori un'altra catena infinita. Ma qui c'è un'altra cosa che non torna, perchè tre volte un terzo dà un intero cascasse il mondo!!! E' come se mancasse qualcosa. 0,9999999999999999 è rappresentabile con 0,(9). E' quasi 1, ma non completamente! Per scoprire che razza di numero è, potrei ricorrere alle frazioni, ma dato che stavolta 1/9 non funziona, perchè 1:9=0,1111111111111111111111111111... oppure 0,(1).
allora dovrò usare la regola per tornare alla frazione generatrice di un numero decimale periodico, che recita così:
1. scrivere il numero senza virgola: 0,(9) = 09
2. sottrarre dal numero tutto ciò che precede il periodo: 9-0=9
3. scrivere, sotto la barra della divisione, un 9 per ogni cifra del periodo ed uno 0 per ogni eventuale cifra dell'antiperiodo: 9/9
Ecco la frazione generatrice di quel numeraccio, ma attenzione 9/9= 1 quindi quel numeraccio, cioè 0,(9) equivale a 1? La risposta è si, ok mi riesce difficile crederci, ma devo ammetterlo, non posso negare l'evidenza. Avevo un'idea sbagliata! Ma allora dove va a finire la corrispondenza biunivoca tra i numeri e le rappresentazioni di essi?
Commenti
salutoni
annarita:)
e certo... l'infinito matematico affascina e fa ammattire !:-)
se hai tempo e curiosità... ma non ti manca sicuro, leggi un po' 0,999999... = 1.
E anche: 1,00 = 1?
un saluto!
g
Giovanna, grazie mille dei link che mi hai inviato, sembrano questioni banali, ma non lo sono affatto!
Saluti a entrambe!
da tanto non pubblichi, peccato!:-)Immagino sia presa da impegni prioritari. Spero possa presto riprendere.
Passo per augurarti Buon Natale, Buone Festività tutte.
Che l'anno nuovo ci riporti i tuoi post! :-)
bacione!
giovanna