Passa ai contenuti principali

Il valore dello O

Anche se usato per primo dai Babilonesi del 300 a.C., l'uso dello zero come numero in sé si deve ai matematici indiani. Gli arabi appresero dagli indiani il sistema di numerazione posizionale decimale, e lo trasmisero agli europei durante il medioevo. Si deve in particolare a Leonardo Fibonacci e al suo Liber Abaci del 1202 la diffusione di tale sistema di numerazione. L'importanza di questa introduzione è straordinaria: intanto si abbandona il sistema additivo che è scomodo perchè sei lì a scrivere un numero lunghissimo, mentre con il sistema decimale, che è posizionale, è tutto molto più sbrigativo e facile! Attenzione però a non scambiare lo zero con "assenza di valore". Si tratta di due concetti diversi, ad esempio: se la temperatura è zero, l'acqua ghiaccia (nel caso della gradazione Celsius della temperatura), se manca il dato della temperatura, assenza del valore, non si può dire nulla!!!
Il numerale o cifra zero si usa nei sistema di numerazione posizionali, quelli cioè in cui il valore di una cifra dipende dalla sua posizione. La cifra zero è usata per saltare una posizione e dare il valore appropriato alle cifre che la precedono o la seguono. Ad esempio, per il numero "centodue", si scrivono un 2 nella posizione delle unità e un 1 nella posizione delle centinaia: la posizione delle decine rimane vuota, quindi vi si scrive uno zero, ottenendo così 102. I più piccoli si possono divertire ed esercitare con le decine e le unità usando questo semplice ed efficace programmino. Buon divertimento!!!

Commenti

Post popolari in questo blog

I numeri primi

Esistono numeri che si possono dividere e altri no, e questi ultimi sono molto più affascinanti! Già perché rappresentano dei principi, delle vere autorità con cui si sono scontrati tanti matematici per anni. Certo per conoscerli si può visitare questa lunga lista, sì ma tradizione vuole che li si trovi da soli magari utilizzando questa simpatica formula di Euclide: Esistono infiniti numeri primi p tale che anche p + 2 sia un numero primo.

Beh, per un pò la regola vale, ma già dal num.7 mi sembra che le cose non stiano proprio così...cominciano a vacillare per poi riprendere e vacillare di nuovo! Certo è, che la riflessione su questa formula ha fatto sì che nascessero i numeri gemelli, Sono gemelli ad esempio 5 e 7, 11 e 13, 41 e 43, 821 e 823.

Un altro modo per scoprirli (se proprio non vogliamo usare la lista) sarebbe quello di eliminare mentalmente tutti i numeri pari (il 2 no) e tutti i numeri che seguono dalle tabelline. Con questo giochino si riescono a scoprire un bel pò di num…

Uno strano personaggio...

Ho trovato uno stravagante personaggio, si chiama Tom Lehrer che ha studiato matematica nella prestigiosa Harvard (ma non si è mai laureato) e mi sono divertita a tradurre la sua canzone "That's Mathematics!":

"Quando conti le pecore per provare a dormire, è bella
Quando c'è qualcosa da spartire, è chiara
Quando stai piegando un foglietto
Questa è la matematica!

Quando una palla rimbalza fuori da un muro
Quando cucini da una ricetta
Quando sai di quanto denaro sei debitore
Questa è matematica!

Quanto oro puoi contenere in un orecchio di elefante?
Quando è mezzogiorno nel cielo, e poi che tempo è qui?
Se potessi contare per un anno, potresti raggiungere l'infinito
O qualche posto nelle vicinanze?

Quandi scegli quale tariffa postale usare
Quando conosci la probabilità che nevicherà
Quando scommeti e finisci in debito
O provi come puoi,
Non puoi scappare dalla matematica!

Andrew Wiles gentilemente sorride
Fa le sue cose ed ecco!
C.V.D. conveniamo e tutti gridiam…

Pensieri periodici

1:3= 0,3333333333333333333333333333333333... è un numero periodico, e wikipedia insegna che è "un numero in cui una parte della sua parte decimale si ripete indefinitamente. Ogni numero di questo tipo è razionale e può essere rappresentato mediante una frazione". Oh, meno male, 1/3, risparmiati tempo e fatica! Ma da dove vengono tutti quei tre dopo la virgola? Allora, cerco di capirci qualcosa: il primo tre dopo la virgola sono tre decimi, il secondo tre è tre centesimi, il terzo tre millesimi e così via. Se ora moltiplico tutto per tre verrebbe così: 3x0,3= 0,9 3x0,03= 0,09 3x0,003= 0,009 e se continuo e li sommo tra loro viene fuori 0,999, ma potreri continuare a moltiplicare e poi a sommare... verrebbe fuori un'altra catena infinita. Ma qui c'è un'altra cosa che non torna, perchè tre volte un terzo dà un intero cascasse il mondo!!! E' come se mancasse qualcosa. 0,9999999999999999 è rappresentabile con 0,(9). E' quasi 1, ma non completamente! Per scoprire …